Cho cac so nguyen a, b, c. d thoa man \(a^3+b^3=2\left(c^3-8d^3\right)\). Chung minh rang \(a+b+c+d⋮3\)
a, Cho a^2+b^2+c^2+3=2(a+b+c)
Chứng minh: a=b=c=1
b, Cho (a+b+c)^2=3(ab+ac+bc)
Chừng minh: a=b=c
c, Cho a,b,c,d (a,b,c,d khác 0) và (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
Chừng minh: a/c=b/d
d, Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh:a=b=c
Cho a+b+c+d=0
a) Chứng minh a^3+b^3+c^3+d^3=3(ab-cd)(c+d)
b)Chứng minh (a+b+c+)^3=a^3 + b^3 + c^3+3(a+b)(b+c)(c+a)
c)Cho c-a=b+d. Chứng Minh a^3+b^3-c^3+d^3=3(d-c)(ab+cd)
cho a^2+b^2+(a-b)^2=c^2+d^2+(c-d)^2.chung minh a^4+b^4+(a-b)^4=c^4+d^4+(c-d)^4
Chứng minh rằng:
a) Nếu (a+b+c+d)(a-b-c-+d)=(a-b+c-d)(a+b-c-d) thì \(\frac{a}{b}\)=\(\frac{c}{d}\)(a,b,c,d khác 0)
b)Nếu a+b+c=0 thì a3+b3+c3=3abc
c)Cho x2=a2+b2+ab và a+b+c=0. Chứng minh 2x4=a4+b4+c4
19 a) Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh rằng a=b=c
b) Cho a,b,c,d là các số khác 0 và
(a+b+c+d)(a-b+c-d)(a+b-c-d)
Chứng minh rằng a/c=b/d
Cho a,b,c,d thoa man : a2 - b2 =a .
Chung minh rang : a2c2 - b2d2 = a2 + d2
Cho a,b,c,d khác 0 và (a+b+c+d)(a-b-c+d)=(a-b+c+d)(a+b+c-d). Chứng minh: a/c=b/d.
1.Chứng minh các đẳng thức sau
a)(a+b+c)^2+(b+c-a)^2+(c+a-b)^2= 4(a^2+b^2+c^2)
b)(a+b+c+d)^2+(a+b+c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2= 4(a^2+b^2+c^2+d^2)
c)(a^2-b^2-c^2-d^2)+2(ab-bc+cd+da)^2= (a^2+b^2+c^2+d^2)-2(ab-ad+bc+dc)^2
d)(a+b+c)^2+a^2+b^2+c^2= (a+b)^2+(b+c)^2=(c+a)^2
2. Chứng minh rằng
a) Nếu (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì a/b=c/d
b) Nếu (a+b+c)^2= 3(ab+bc+ca) thì a=b=c