a+b+c = 1 => (a+b+c)^2 = 1 => a^2 + b^2 + c^2 + 2(ab+bc+ca)=1 (1)
Lại có 1/a + 1/b +1/c = 0 => 2(ab+bc+ca) =0 (2) (nhân 2 vế cho 2abc khác 0)
Lấy (1) trừ (2) vế theo vế ta được a^2 + b^2 + c^2=1 (d.p.c.m)
a+b+c = 1 => (a+b+c)^2 = 1 => a^2 + b^2 + c^2 + 2(ab+bc+ca)=1 (1)
Lại có 1/a + 1/b +1/c = 0 => 2(ab+bc+ca) =0 (2) (nhân 2 vế cho 2abc khác 0)
Lấy (1) trừ (2) vế theo vế ta được a^2 + b^2 + c^2=1 (d.p.c.m)
cho a+b+c=a^2+b^2+c^2 và a,b,c khác 0 chứng minh rằng 1/a^2+1/b^2+1/c^2=3/abc
1. Rút gọn: M = [(x^5)-(2x^4)+(2x^3)-(4x^2)+3x+6]/[(x^2)+2x-8]
2. Cho a, b, c thỏa mãn: (1/a)+(1/b)+(1/c)=1/(a+b+c)
Chứng minh rằng: M = [(a^19)+(b^19)].[(b^5)+(c^5)].[(c^2001)+(a^2001)]=0
3. Cho a, b, c, x, y, z thỏa mãn: a+b+c=1; (a^2)+(b^2)+(c^2)=1 và 1/a=1/b=1/c
Chứng minh rằng: xy+yz+xz=0
Cho 1/a+1/b+1/c=3 và 1/a^2+1/b^2+1/c^2=5(abc khác 0).Chứng minh rằng a+b+c=2abc
Cho a,b,c > 0 và a + b + c ≤ 1 chứng minh rằng: 1/(a^2 + 2bc)+ 1/(b^2 + 2ac) + 1/(c^2 + 2ab) >=9?
A, cho abc = 1 và a+b+c = 1/a +1/b +1/c. Chứng minh tồn tại một trong 3 số a,b,c bằng 1
B, chứng minh rằng nếu a + b + c = n và 1/a + 1/b + 1/c = 1/n thì tồn tại một trong ba số bằng n
C, chứng minh rằng nếu 3 số a,b,c khác 0 thì thỏa mãn đẳng thức
a2 -- b2 / ab + b2 -- c2 /bc + c2 -- a2/ca =0
thì tồn tại hai số bằng nhau
Cho a,b,c thỏa mãn a+b+c=0. Chứng minh rằng: (1/a+1/b+1/c)^2=1/a^2+1/b^2+1/c^2
Chứng minh rằng nếu a,b,c \(\ge\)0 và abc=1 thì
\(\dfrac{1}{2+a}+\dfrac{1}{2+b}+\dfrac{1}{2+c}\le1\)
cho a*(b+1) + b*(a+1) = (a+1)*(b+1). Chứng minh rằng a*b=1
cho 2*(a+1)*(a+b)=(a+b)*(a+b+2). chứng minh rằng a2+b2 =2
cho a+b+c=0 chứng minh rằng a3+a2*c-a*b*c+b2*c+b3=0
Cho a + b + c = 1 và 1/a + 1/b + 1/c = 0. Chứng minh rằng: a2 + b2 + c2 = 1