MN

a,b,c là số đo ba cạnh của một tam giác vuông với c là cạnh huyền. Chứng minh rằng: \(a^{2n}+b^{2n}\le c^{2n}\); n là  số tự nhiên khác 0

NM
24 tháng 12 2021 lúc 21:48

Áp dụng PTG ta có: \(c^2=a^2+b^2\) với \(n=1\)

Giả sử đúng với \(n=k\)

\(\Rightarrow A_k=a^{2k}+b^{2k}\le c^{2k}\)

Cần cm nó cũng đúng với \(n=k+1\)

\(\Rightarrow A_{k+1}=a^{2k+2}+b^{2k+2}=c^{2k+2}\\ \Rightarrow\left(a^{2k}+b^{2k}\right)\left(a^2+b^2\right)-a^2b^{2k}-a^{2k}b^2\le c^{2k}\cdot c^2=c^{2k+2}\)

Vậy BĐT đúng với \(n=k+1\)

\(\RightarrowĐpcm\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
KS
Xem chi tiết
H24
Xem chi tiết
KT
Xem chi tiết
PT
Xem chi tiết
HV
Xem chi tiết
HT
Xem chi tiết