TQ

abc chia hết cho 27.CMR bca chia hết cho 27

VT
18 tháng 9 2017 lúc 21:29

vì abc chia hết cho 27, mà \(27=3^3\)=> abc phải chia hết cho 3

để abc chia hết cho 3 <=> a+b+c \(⋮\)3

do abc chia hết cho 3 phụ thuộc vào tổng các chữ số

=> \(abc⋮3\Rightarrow bca⋮3\)hay bca chia hết cho 27

Bình luận (0)
DL
18 tháng 9 2017 lúc 21:32

abc chia hết cho 27 

\(\Rightarrow\)( 100a + 10b + c ) chia hết cho 27

\(\Rightarrow\)10 . ( 100a + 10b + c ) chia hết cho 27

\(\Rightarrow\)1000a + 100b + 10c chia hết cho 27

\(\Rightarrow\)999a + ( 100b + 10c + a ) chia hết cho 27

Mà 999a chia hết cho 27 \(\Rightarrow\)bca chia hết cho 27 .

Bình luận (0)
NL
18 tháng 9 2017 lúc 21:38

Giả sử \(\overline{abc}\)chia hết cho 27 thì trước hết \(\overline{abc}\)phải chia hết cho 9 \(\Rightarrow\)a + b + c chia hết cho 9 

\(\Rightarrow\overline{bca}\)cũng chia hết cho 9 \(\Rightarrow\overline{bca}=9m\left(m\in N\right)\)

Theo bài ra ta có :

 \(\Leftrightarrow\left(100a+10b+c\right)-\left(100b+10c+a\right)=9\left(3k-m\right)\)

\(\Leftrightarrow99a-90b-9c=9\left(3k-m\right)\)

\(\Leftrightarrow11a-10b-c+m=3k\)

\(\Leftrightarrow21a-10\left(a+b+c\right)+9c+m=3k\)

Vế phải chia hết cho 3 mà các số : \(21a;10\left(a+b+c\right)\)và \(9c\)đều chia hết cho 3 

\(\Rightarrow m\)cũng chia hết cho 3

\(\Rightarrow m=3n\left(n\in N\right)\)

\(\Rightarrow\overline{bca}=9m=27n\)

\(\Rightarrow\overline{bca}\)chia hết cho 27 ( đpcm ) 

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
PS
Xem chi tiết
S2
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
LA
Xem chi tiết
TA
Xem chi tiết
PT
Xem chi tiết