ab+bc+ca=3abc tìm giá trị lớn nhất 1/(2a+b+c) +1/(a+2b+c) + 1/(a+b+2c)
Cho ba số thực dương a,b,c thỏa mãn ab+bc+ca = 3abc. Tìm giá
trị lớn nhất của biểu thức T = \(\sqrt{\dfrac{a}{3b^2c^2+abc}}+\sqrt{\dfrac{b}{3b^2c^2+abc}}+\sqrt{\dfrac{c}{3a^2b^2+abc}}\)
Cho a, b, c > 0 thỏa mãn : \(ab+bc+ca=3abc\)
Tìm GTLN : F = \(\dfrac{1}{a+2b+3c}+\dfrac{1}{2a+3b+c}+\dfrac{1}{3a+b+2c}\)
Cho ba số dương a,b,c thỏa mãn điều kiện abc=1
Tìm giá trị nhỏ nhất của biểu thức :Q=\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
cho a,b,c >0 và ab+bc+ca=3abc. Tìm GTLN của F=\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)
Cho a,b,c >0, ab+bc+ca=3.
Tìm giá trị nhỏ nhất của P=\(\frac{a}{1+2b^2}+\frac{b}{1+2c^2}+\frac{c}{1+2a^2}\)
Cho ba số dương a, b, c thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức:
\(A=17\left(a^2+b^2+c^2\right)+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
cho a,b,c là các số thực dương. chứng minh rằng a^2b/ab^2+1 + b^2c/bc^2+1 + c^2a/ca^2+1 >= 3abc/1+abc
Cho a,b,c là các số dương thỏa mãn a+b+c=6.Tìm giá trị lớn nhất của biểu thức
\(A=\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\)