bien doi ve trai ta duoc
(a+b)(a^2-ab+b^2)(a-b)(a^2+ab+b^2)=a^3+b^3+a^3-b^3=2a^3=VP(dpcm)
bien doi ve trai ta duoc
(a+b)(a^2-ab+b^2)(a-b)(a^2+ab+b^2)=a^3+b^3+a^3-b^3=2a^3=VP(dpcm)
cho |a| khác |b| và ab khác 0 thoả mãn (a−b)/(a^2+ab) + (a+b)/(a^2−ab) = (3a−b)/(a^2−b^2).Tính B=(a^3+2a^2b+3b^2)/(2a^3+a^2b+b^3)
(a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^20=2a^3
Chứng minh : (a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2) = 2a^3
Cho 2 số thực a,b thỏa mãn: lal khác lbl va ab khac 0 thoa man \(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\)
Tính P=\(\frac{a^3+2a^2b+2b^3}{2a^3+ab^2+2b^3}\)
chứng minh rằng (a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2)=2a^3
cho |a| ≠ |b| và ab ≠ 0 thoả mãn \(\frac{a-b}{a^2+ab}\)+\(\frac{a+b}{a^2-ab}\)=\(\frac{3a-b}{a^2-b^2}\)
Tính B=\(\frac{a^3+2a^2+3b^2}{2a^3+a^2+b^3}\)
17 :Chứng minh rằng
( a + b ) . ( a^2 - ab + b^2 ) + ( a - b ) . ( a^2 + ab + b^2 ) = 2a^3a^3 + a^3 = ( a+ b ). ( ( a - b )^2 + ab )( a^2 + b^2 ).( c^2 + d^2 ) = ( ac + bd )^2 + ( ad - bc )^2Giúp mình bài này nha:
(a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2) =2a^3
cho |a| khác |b| và ab khác 0 thoả mãn \(\frac{a-b}{a^2+ab}\) +\(\frac{a+b}{a^2-ab}\)=\(\frac{3a-b}{a^2-b^2}\)
Tính B=\(\frac{a^3+2a^2b+3b^2}{2a^3+a^2b+b^3}\)