theo 1 ta có b=2.4-a
theo 2 ta có c=3.9-a
thay vô 3 giải ra a
theo 1 ta có b=2.4-a
theo 2 ta có c=3.9-a
thay vô 3 giải ra a
a(b+c−a)2+b(c+a−b)2+c(a+b−c)2+(a+b−c)+(b+c−a)+(c+a−b)a(b+c−a)2+b(c+a−b)2+c(a+b−c)2+(a+b−c)+(b+c−a)+(c+a−b)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\ge a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a-\frac{a^2}{a+b}+b-\frac{b^2}{b+c}+c-\frac{c^2}{c+a}\ge a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
\(\Leftrightarrow a^2\left(a+b\right)\left(a+c\right)+b^2\left(b+a\right)\left(b+c\right)+c^2\left(c+a\right)\left(c+b\right)\ge a^2\left(a+c\right)\left(b+c\right)+b^2\left(b+a\right)\left(c+a\right)+c^2\left(c+b\right)\left(a+b\right)\)
\(\Leftrightarrow a^4+b^4+c^4\ge a^2c^2+a^2b^2+b^2c^2\left(lđ\right)\)
\(\Leftrightarrow\frac{a^2+bc}{b+c}+\frac{b^2+ca}{c+a}+\frac{c^2+ab}{a+b}\ge a+b+c\)
Tìm các số nguyên a;b;c sao cho giá trị tuyệt đối của chúng là nhỏ nhất sao cho:
a + b + c = (a - b) / c
a - b - c = a / (b + c)
abc = (a + b) / c + (a - b) / c
a/b/c = a + b + c - a / b - b / c - c / a
Chứng minh:
\(\frac{A+a+B+b}{A+a+B+b+c+d}+\frac{B+b+C+c}{B+b+C+c+a+d}>\frac{C+c+A+a}{C+c+A+a+b+d}\)
trong đó A;a;B;b;C;c;d là số dương
1, Cho a, b, c là 3 số dương. CMR:
a, \(\dfrac{a}{\sqrt{a+b}\sqrt{a+c}}+\dfrac{b}{\sqrt{a+b}\sqrt{b+c}}+\dfrac{c}{\sqrt{a+c}\sqrt{b+c}}\le\dfrac{3}{2}\)
b, \(\dfrac{a}{\sqrt{a+b}\sqrt{b+c}}+\dfrac{b}{\sqrt{a+c}\sqrt{b+c}}+\dfrac{c}{\sqrt{a+c}\sqrt{b+a}}\ge\dfrac{3}{2}\)
cho a+b+c=0
CMR: [(a-b)/c + (b-c)/a + (c-a)/b] [c/(a-b) +a/(b-c) + b/(c-a)] =9
Tính a+b/(b-c)(c-a)+b+c/(c-a)(a-b)+c+a/(a-b)(b-c)
Cho a,b,c,d > 0. Tìm min
S= a/b+c+d+b/a+c+d+c/a+b+d+d/a+b+b+c+d/a+a+c+d/b+a+b+d/c+a+b+c/d
(b+c)/a + (c+a)/b + (a+b)/c >= 4 (a/(b+c) + b/(c+a) + c/(a+b))