a = 9/1.2 + 9/2.3 + 9/3.4 + ... + 9/98.99 + 9/99.100
a = 9.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/98.99 + 1/99.100)
a = 9.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)
a = 9.(1 - 1/100)]
a = 9.99/100
a = 891/100
\(a=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9.\left(1-\frac{1}{100}\right)\)
\(=9.\)\(\frac{99}{100}\)
\(=\frac{891}{100}\)
a = 9/1.2 + 9/2.3 + 9/3.4 + ... + 9/98.99 + 9/99.100
a = 9.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/98.99 + 1/99.100)
a = 9.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)
a = 9.(1 - 1/100)]
a = 9.99/100
a = 891/100