\(A=3+3^2+3^3+...+3^{10}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(A=\left(3+3^2\right)+3^2.\left(3+3^2\right)+...+3^8.\left(3+3^2\right)\)
\(A=\left(3+3^2\right)\left(1+3^2+...+3^8\right)\)
\(A=12.\left(1+3^2+...+3^8\right)\)
Ta có: \(12⋮4\)
\(\Rightarrow12.\left(1+3^2+...+3^8\right)⋮4\)
\(\Rightarrow A⋮4\)
\(\Rightarrow\)A là bội của 4
Vậy A là bội của 4 (đpcm)