Ta có : \(A=3+3^2+3^3+......+3^{2006}\)
=> \(3A=3^2+3^3+......+3^{2007}\)
=> \(3A-A=3^{2007}-3\)
=> \(2A=3^{2007}-3\)
=> \(A=\frac{3^{2007}-3}{2}\)
b) Ta có : \(2A=3^{2007}-3\) (theo ý a)
=> \(2A+3=3^{2007}\)
=> x = 2007
\(A=3+3^2+3^3+.........+3^{2006}\)
\(\Leftrightarrow3A=3^2+3^3+.........+3^{2007}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+.......+3^{2007}\right)-\left(3+3^2+.....+3^{2006}\right)\)
\(\Leftrightarrow2A=3^{2007}-3\)
\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)
\(\Leftrightarrow2A+3=3^{2007}\)
\(\Leftrightarrow3^x=3^{2007}\)
\(\Leftrightarrow x=2007\left(tm\right)\)
a)\(A=3+3^2+3^3+...+3^{2006}\)
=>\(3A=3\left(3+3^2+3^3+...+3^{2006}\right)=3^2+3^3+3^4+...+3^{2007}\)
=>\(3A-A=\left(3^2+3^3+3^4+...+3^{2007}\right)-\left(3+3^2+3^3+...+3^{2006}\right)\)
=>\(2A=3^{2007}-3\Rightarrow A=\frac{3^{2007}-3}{2}\)
b)\(2A+3=3^x\Rightarrow2.\frac{3^{2007}-3}{2}+3=3^x\Rightarrow3^{2007}=3^x\Rightarrow x=2007\)