TC

a^2/b^2+b^2/a^2>=a/b+b/a

Dùng đẳng thức co-si để Cm

 

TH
29 tháng 3 2022 lúc 21:30

-Sửa đề: \(a,b>0\)

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{a}\)

\(\Leftrightarrow\dfrac{a^4+b^4}{a^2b^2}\ge\dfrac{a^2+b^2}{ab}\)

\(\Leftrightarrow a^3b^3.\dfrac{a^4+b^4}{a^2b^2}\ge a^3b^3.\dfrac{a^2+b^2}{ab}\)

\(\Leftrightarrow\left(a^4+b^4\right)ab\ge\left(a^2+b^2\right)a^2b^2\)

\(\Leftrightarrow\left(a^4+b^4\right)ab-\left(a^2+b^2\right)a^2b^2=0\)

\(\Leftrightarrow ab\left[a^4+b^4-\left(a^2+b^2\right)ab\right]\ge0\)

\(\Leftrightarrow ab\left(a^4+b^4-a^3b-ab^3\right)\ge0\)

\(\Leftrightarrow ab\left[a^3\left(a-b\right)+b^3\left(b-a\right)\right]\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (đúng)

 

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
BK
Xem chi tiết
BK
Xem chi tiết
LN
Xem chi tiết
BK
Xem chi tiết
TN
Xem chi tiết
PA
Xem chi tiết
KK
Xem chi tiết