CM: a/b = c/d biết :
a mũ 2017 + b mũ 2017 a mũ 2017 - b mũ 2017
------------------------------- = ------------------------------
c mũ 2017 + d mũ 2017 c mũ 2017 - d mũ 2017
chung minh a/b=c/d thi [a-b/c-d]^2017=a^2017+b^2017/c^2017+d^2017
Cho \(b^2=ac\) và \(c^2=bd\)(với \(b,c,d\ne0;b+d\ne d;b^{2017}+c^{2017}\ne d\))
CMR \(\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}+d^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)
Cho b2=a.c và c2=b.d(với b;c;d khác 0;b+c không bằng d;b2017+c2017ko bằng d2017(ko bằng có nghĩa là lớn hơn hoặc nhỏ hơn một sô)). Chứng minh rằng \(\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}-d^{2017}}\)=\(\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)
Cho b2 = a*c, c2 = b*d (với b, c, d khác 0), (b+c khác 0), (b2017 + c2017 khác d2017). Chứng minh rằng a2017 + b2017 - c2017 / b2017 + c2017 - d2017 = (a + b- c)2017 / (b + c -d)2017.
Cho b\(^{^2}\)=a.c và c\(^2\)=b.d (Với b,c,d \(\ne\)0; b + c \(\ne\)d; b\(^{2017}\)+ c\(^{2017}\)\(\ne\)d\(^{2017}\)). Chứng minh rằng \(\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}-d^{2017}}\)=\(\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)
Cho a,b,c,d là 4 số khác 0; biết \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng \(\frac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}\)
Cho \(\frac{a}{b}\)= \(\frac{c}{d}\). CMR : \(\frac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}\)= \(\frac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}\)
CHO CÁC SỐ DƯƠNG a,b,c khác d và \(\frac{a}{b}=\frac{c}{d}\)
CMR. \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}=\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-b^{2017}\right)^{2016}}\)