\(A=\frac{2015}{2016}+\frac{2016}{2017}=1-\frac{1}{2016}+1-\frac{1}{2017}>1\)
\(B=\frac{2015+2016}{2016+2017}< \frac{2016+2017}{2016+2017}=1\)
Suy ra \(A>B\).
\(A=\frac{2015}{2016}+\frac{2016}{2017}\)
\(=1-\frac{1}{2015}+1-\frac{1}{2016}\)
\(=2-\left(\frac{1}{2015}+\frac{1}{2016}\right)>1\)
\(B=\frac{2015+2016}{2016+2017}\)
\(=\frac{4031}{4033}\)
\(=1-\frac{2}{4033}< 1\)
Vậy A > B
Ta có :
\(A=\frac{2015}{2016}+\frac{2016}{2017}=1-\frac{1}{2016}+1-\frac{1}{2017}=2-\left(\frac{1}{2016}+\frac{1}{2017}\right)\) \(\Rightarrow\)\(A>1\)
\(B=\frac{2015+2016}{2016+2017}< \frac{2016+2017}{2016+2017}=1\)\(\Rightarrow\)\(B< 1\)
Từ đó ta so sánh được \(A>B\)