#)Giải :
Ta có :
\(A=\frac{1999^{1999}+1}{1999^{1998}+1}=\frac{1999^{1999}+1999-1998}{1999^{1998}+1}=1999-\frac{1998}{1999^{1998}+1}\)
\(B=\frac{1999^{2000}+1}{1999^{1999}+1}=\frac{1999^{2000}+1999-1998}{1999^{1999}+1}=1999-\frac{1998}{1999^{1999}+1}\)
Vì \(1999^{1998}+1< 1999^{1999}+1\)
\(\Rightarrow\frac{1}{1999^{1998}+1}>\frac{1}{1999^{1999}+1}\Rightarrow1999+\frac{-1}{1999^{1998}+1}< 1999+\frac{-1}{1999^{1999}+1}\Rightarrow A< B\)