a) Gọi A = 1/2+1/2^2+1/2^3+1/2^4+...+1/2^n
Có 2A = 1+ 1/2+ 1/2^2 +1/2^3 + ... + 1/2^n-1
2A-A= 1 - 1/2^n
=> A = 1 - 1/2^n
Có 1 - 1/2^n < 1
=> A<1
Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{10.10}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}< 1\left(\text{đpcm}\right)\)
1/2^2+1/3^2+...+1/10^2<1/1*2+1/2*3+1/3*4+...+1/9*10
<1/1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
<1/1-1/10
<9/10<1
=>1/2^2+1/3^2+...+1/10^2<1