Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TL

A=1-3+3^2-3^3+...+-3^2011+3^2012.

Chứng minh (4A-1) là lũy thừa của 3

 
TT
23 tháng 2 2020 lúc 20:47

Ta có : \(A=1-3+3^2-3^3+...+3^{2010}-3^{2011}+3^{2012}\)

\(\Rightarrow3A=3-3^2+3^3-3^4+....+3^{2011}-3^{2012}+3^{2013}\)

\(\Rightarrow3A+A=3^{2013}+1\)

\(\Rightarrow4A=3^{2013}+1\)

\(\Rightarrow4A-1=3^{2013}\) là lũy thừa bậc 3. (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
LN
23 tháng 2 2020 lúc 20:51

3.A=3 .\(\left(1-3+3^2-3^3+...-3^{2011}+3^{2012}\right)\)

3.A= \(3-3^2+3^3-3^4+..-3^{2012}+3^{2013}\)

3A+A=\(3-3^2+3^3-3^4+..-3^{2012}+3^{2013}\)+\(\left(1-3+3^2-3^3+...-3^{2011}+3^{2012}\right)\)

4A= \(1+3^{2013}\)

nên 4A-1=32013

Vậy 4A-1 là lũy thừa của 3

Bình luận (0)
 Khách vãng lai đã xóa
TL
23 tháng 2 2020 lúc 20:55

\(A=1-3+3^2-3^3+....-3^{2011}+3^{2012}\)

\(3A=3\left(1-3+3^2-3^3+...-3^{2011}+3^{2012}\right)\)

\(3A=3-3^2+3^3-3^3+....-3^{2012}+3^{2013}\)

\(3A+A=\left(3-3^2+3^3+...-3^{2012}+3^{2013}\right)+\left(1-3+3^2-3^3+...-3^{2011}+3^{2012}\right)\)

\(4A=3^{2012}+1\)

\(\Rightarrow4A-1=3^{2012}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
23 tháng 2 2020 lúc 21:14

Dòng thứ 2 từ dưới đi lên mình nhầm nhé!
\(4A=3^{2013}+1\)

\(\Rightarrow4A-1=3^{2013}+1-1=3^{2013}\)

\(\Rightarrow\)4A-a là lũy thừa của 3 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
HA
Xem chi tiết
TT
Xem chi tiết
YG
Xem chi tiết
C2
Xem chi tiết
NH
Xem chi tiết
VQ
Xem chi tiết