Bài 3. Hàm số mũ. Hàm số lôgarit

H24

a) Xét hàm số mũ \(y = {2^x}\) với tập xác định \(\mathbb{R}\).

i) Hoàn thành bảng giá trị sau:

ii) Trong mặt phẳng toạ độ \(Oxy\), xác định các điểm có toạ độ như bảng trên. Làm tương tự, lấy nhiều điểm \(M\left( {x;{2^x}} \right)\) với \(x \in \mathbb{R}\) và nối lại ta được đồ thị hàm số \(y = {2^x}\) như Hình 2. Từ đồ thị nảy, nêu nhận xét về tính liên tục, tính đồng biến, nghịch biến, giới hạn khi \(x \to  + \infty ,x \to  - \infty \) và tập giá trị của hàm số đã cho.

b) Lập bảng giá trị và vẽ đồ thị của hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\). Từ đó, nêu nhận xét về tính liên tục, tính đồng biến, nghịch biến, giới hạn khi \(x \to  + \infty ,x \to  - \infty \) và tập giá trị của hàm số này.

NT
21 tháng 8 2023 lúc 3:25

i:

x-2-1012
y1/41/2124

ii:

Hàm số liên tục và đồng biến trên R

\(\lim\limits_{x\rightarrow+\infty}2^x=+\infty;\lim\limits_{x\rightarrow-\infty}2^x=0\)

Tập giá trị: \((0;+\infty)\)

b: 

bảng giá trị:

x-2-1012
y4211/21/4

 

loading...

Hàm số liên tục và nghịch biến trên R

\(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{2}\right)^x=0;\lim\limits_{x\rightarrow-\infty}\left(\dfrac{1}{2}\right)^x=+\infty\)

Tập giá trị: (0;+\(\infty\))

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết