a:
Bảng giá trị:
x | -2 | -1 | 0 | 1 | 2 |
y | 1/16 | 1/4 | 1 | 4 | 16 |
b:
Bảng giá trị:
x | -2 | -1 | 0 | 1 | 2 |
y | 16 | 4 | 1 | 1/4 | 1/16 |
a:
Bảng giá trị:
x | -2 | -1 | 0 | 1 | 2 |
y | 1/16 | 1/4 | 1 | 4 | 16 |
b:
Bảng giá trị:
x | -2 | -1 | 0 | 1 | 2 |
y | 16 | 4 | 1 | 1/4 | 1/16 |
Trên cùng một hệ trục toạ độ, vẽ đồ thị các hàm số \(y = {3^x}\) và \(y = {\left( {\frac{1}{3}} \right)^x}\).
Vẽ đồ thị các hàm số:
a) \(y = \log x\);
b) \(y = {\log _{\frac{1}{4}}}x\).
Trên cùng một hệ trục toạ độ, vẽ đồ thị các hàm số \(y = {\log _3}x\) và \(y = {\log _{\frac{1}{3}}}x\).
Tìm tập xác định của các hàm số:
a) \({\log _2}\left( {3 - 2{\rm{x}}} \right)\);
b) \({\log _3}\left( {{x^2} + 4{\rm{x}}} \right)\).
a) Xét hàm số \(y = {\log _2}x\) với tập xác định \(D = \left( {0; + \infty } \right)\).
i) Hoàn thành bảng giá trị sau:
ii) Trong mặt phẳng toạ độ \(Oxy\), xác định các điểm có toạ độ như bảng trên. Làm tương tự, lấy nhiều điểm \(M\left( {x;{{\log }_2}x} \right)\) với \(x > 0\) và nối lại ta được đồ thị hàm số \(y = {\log _2}x\) như Hình 4. Từ đồ thị này, nêu nhận xét về tính liên tục, tính đồng biến, nghịch biến, giới hạn khi \(x \to + \infty ,x \to {0^ + }\) và tập giá trị của hàm số đã cho.
b) Lập bảng giá trị và vẽ đồ thị của hàm số \(y = {\log _{\frac{1}{2}}}x\). Từ đó, nhận xét về tính liên tục, tính đồng biến, nghịch biến, giới hạn khi \(x \to + \infty ,x \to {0^ + }\) và tập giá trị của hàm số này.
a) Xét hàm số mũ \(y = {2^x}\) với tập xác định \(\mathbb{R}\).
i) Hoàn thành bảng giá trị sau:
ii) Trong mặt phẳng toạ độ \(Oxy\), xác định các điểm có toạ độ như bảng trên. Làm tương tự, lấy nhiều điểm \(M\left( {x;{2^x}} \right)\) với \(x \in \mathbb{R}\) và nối lại ta được đồ thị hàm số \(y = {2^x}\) như Hình 2. Từ đồ thị nảy, nêu nhận xét về tính liên tục, tính đồng biến, nghịch biến, giới hạn khi \(x \to + \infty ,x \to - \infty \) và tập giá trị của hàm số đã cho.
b) Lập bảng giá trị và vẽ đồ thị của hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\). Từ đó, nêu nhận xét về tính liên tục, tính đồng biến, nghịch biến, giới hạn khi \(x \to + \infty ,x \to - \infty \) và tập giá trị của hàm số này.
So sánh các cặp số sau:
a) \(0,{85^{0,1}}\) và \(0,{85^{ - 0,1}}\).
b) \({\pi ^{ - 1,4}}\) và \({\pi ^{ - 0,5}}\).
c) \(\sqrt[4]{3}\) và \(\frac{1}{{\sqrt[4]{3}}}\).
So sánh các cặp số sau:
a) \({\log _{\frac{1}{2}}}4,8\) và \({\log _{\frac{1}{2}}}5,2\);
b) \({\log _{\sqrt 5 }}2\) và \({\log _5}2\sqrt 2 \);
c) \( - {\log _{\frac{1}{4}}}2\) và \({\log _{\frac{1}{2}}}0,4\).
So sánh các cặp số sau:
a) \(1,{3^{0,7}}\) và \(1,{3^{0,6}}\);
b) \(0,{75^{ - 2,3}}\) và \(0,{75^{ - 2,4}}\).