Bài 3. Hàm số mũ. Hàm số lôgarit

H24

Cường độ ánh sáng \(I\) dưới mặt biển giảm dần theo độ sâu theo công thức \(I = {I_0}.{a^d}\), trong đó \({I_0}\) là cường độ ánh sáng tại mặt nước biển, \(a\) là hằng số \(\left( {a > 0} \right)\)  và \(d\) là độ sâu tính bằng mét tính từ mặt nước biển.

(Nguồn: https://www.britannica.com/science/seawer/Optical-properties)

a) Có thể khẳng định rằng \(0 < a < 1\) không? Giải thích.

b) Biết rằng cường độ ánh sáng tại độ sâu 1 m bằng \(0,95{I_0}\). Tìm giá trị của \(a\).

c) Tại độ sâu 20 m, cường độ ánh sáng bằng bao nhiêu phần trăm so với \({I_0}\)? (Làm tròn kết quả đến hàng đơn vị.)

HM
26 tháng 8 2023 lúc 9:42

a, Vì cường độ ánh sáng giảm dần theo độ sâu nên hàm số \(I=I_0\cdot a^d\) nghịch biến.

Vậy 0 < a < 1.

b, Ta có: \(I=I_0\cdot a^d\Rightarrow0,95I_0=I_0\cdot a^1\Leftrightarrow a=0,95\)

c, Ta có: \(I=I_0\cdot a^d=I_0\cdot0,95^{20}\approx0,36I_0\)

Vậy tại độ sâu 20m, cường độ ánh sáng bằng 36% so với \(I_0\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết