DY

a, x2+y2+z2=xy+yz+xz

b, 2x2+2y2+z2+2xy+2xz+2yz+10x+6y+34=0

Tìm x và y 

KN
12 tháng 10 2019 lúc 14:19

a) Áp dụng BĐT Cauchy cho 2 số dương:

\(x^2+y^2\ge2\sqrt{\left(xy\right)^2}=2xy\)

\(y^2+z^2\ge2\sqrt{\left(yz\right)^2}=2yz\)

\(x^2+z^2\ge2\sqrt{\left(xz\right)^2}=2xz\)

Cộng từ vế của các BĐT trên:

\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=y\end{cases}}\Leftrightarrow x=y=z\))

Bình luận (0)
KN
12 tháng 10 2019 lúc 18:52

b) \(2x^2+2y^2+z^2+2xy+2yz+2xz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+10x+25\right)\)

\(+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)(1)

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)nên (1) xảy ra

\(\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}\)

Bình luận (0)

Các câu hỏi tương tự
UT
Xem chi tiết
TL
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
KL
Xem chi tiết
LT
Xem chi tiết
NC
Xem chi tiết
LN
Xem chi tiết