LT

a) |x+1| + |x+2| = x

b) |x+1| + |x+2| + |x+3| = 2x

c) |x+1| + |x+2| + |x+3| + |x+4| = 3x

d) |x+1| + |x+2| + |x+3| + |x+4| + |x+5| = 4x

AH
15 tháng 9 2021 lúc 22:43

Lời giải:

a. Do $|x+1|+|x+2|\geq 0$ với mọi $x$ theo tính chất trị tuyệt đối

$\Rightarrow x\geq 0$

$\Rightarrow x+1, x+2>0\Rightarrow |x+1|=x+1; |x+2|=x+2$. Khi đó:

$(x+1)+(x+2)=x$

$\Leftrightarrow x=-3$ (loại do $x\geq 0$)

Vậy không tồn tại $x$ thỏa mãn

b. Tương tự phần a:

$|x+1|+|x+2|+|x+3|\geq 0\Rightarrow 2x\geq 0\Rightarrow x\geq 0$

$\Rightarrow x+1, x+2, x+3>0$

$\Rightarrow |x+1|=x+1; |x+2|=x+2; |x+3|=x+3$. Khi đó:

$(x+1)+(x+2)+(x+3)=2x$

$\Leftrightarrow x=-6< 0$ (loại)

Vậy không tồn tại $x$ thỏa mãn.

Bình luận (0)
AH
15 tháng 9 2021 lúc 22:46

c. 

$|x+1|+|x+2|+|x+3|+|x+4|\geq 0$

$\Rightarrow 3x\geq 0\Rightarrow x\geq 0$

$\Rightarrow x+1,x+2, x+3, x+4>0$

$\Rightarrow |x+1|=x+1, |x+2|=x+2, |x+3|=x+3, |x+4|=x+4$. Khi đó:

$(x+1)+(x+2)+(x+3)+(x+4)=3x$

$4x+10=3x$

$x=-10< 0$ (loại vì $x\geq 0$)

Vậy không tồn tại $x$ thỏa mãn 

d.

$|x+1|+|x+2|+|x+3|+|x+4|+|x+5|\geq 0$

$\Rightarrow 4x\geq 0\Rightarrow x\geq 0\Rightarrow x+1,x+2,x+3,x+4,x+5>0$

$\Rightarrow |x+1|=x+1, |x+2|=x+2, |x+3|=x+3, |x+4|=x+4, |x+5|=x+5$. Khi đó:

$(x+1)+(x+2)+(x+3)+(x+4)+(x+5)=4x$

$5x+15=4x$

$x=-15< 0$ (loại vì $x\geq 0$)

Vậy không tồn tại $x$ thỏa đề.

Bình luận (0)

Các câu hỏi tương tự
DG
Xem chi tiết
PH
Xem chi tiết
TP
Xem chi tiết
ND
Xem chi tiết
LA
Xem chi tiết
TD
Xem chi tiết
MD
Xem chi tiết
LP
Xem chi tiết
AH
Xem chi tiết