a, \(S=\frac{3}{6}+\frac{3}{10}+...+\frac{3}{4950}\)
\(\frac{1}{6}S=\frac{1}{6}\left(\frac{3}{6}+\frac{3}{10}+...+\frac{3}{4950}\right)\)
\(\frac{1}{6}S=\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(\frac{1}{6}S=\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(\frac{1}{6}S=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{6}S=\frac{1}{3}-\frac{1}{100}\)
\(\frac{1}{6}S=\frac{97}{300}\)
\(\Rightarrow S=\frac{97}{300}\div\frac{1}{6}=\frac{97}{300}.6=\frac{97}{50}\)
Vậy S = \(\frac{97}{50}\)
b, Đặt A = 3+32+33+34+ ... +396
Số số hạng của A là : (96 - 1) : 1 + 1 = 96 (số hạng)
Nếu nhóm 6 số hạng vào 1 nhóm thì số nhóm là :
96 : 6 = 16 (nhóm)
Ta có :
A = (3 + 32 + 33 + 34 + 35 + 36) + (37 + 38 + 39 + 310 + 311 + 312) + ... + ( 391 + 392 + 393 + 394 + 395 + 396)
=> A = 3.(1 + 3 + 32 + 33 + 34 + 35) + 37(1 + 3 + 32 + 33 + 34 + 35) + ... + 391(1 + 3 + 32 + 33 + 34 + 35)
=> A = 3. 364 + 37.364 + ... + 391.364
=> A = 364. (3 + 37 + .... + 391) \(⋮\)7 (vì 364 \(⋮\)7)
Vậy A \(⋮\)7