H24

a) Tính tổng: S = 3/6 + 3/10 + ... + 3/4950

b) Chứng minh rằng: 3+32+33+34+ ... +396 chia hết cho 7

LS
9 tháng 7 2018 lúc 16:34

a, \(S=\frac{3}{6}+\frac{3}{10}+...+\frac{3}{4950}\)

\(\frac{1}{6}S=\frac{1}{6}\left(\frac{3}{6}+\frac{3}{10}+...+\frac{3}{4950}\right)\)

\(\frac{1}{6}S=\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(\frac{1}{6}S=\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\frac{1}{6}S=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{6}S=\frac{1}{3}-\frac{1}{100}\)

\(\frac{1}{6}S=\frac{97}{300}\)

\(\Rightarrow S=\frac{97}{300}\div\frac{1}{6}=\frac{97}{300}.6=\frac{97}{50}\)

Vậy S = \(\frac{97}{50}\)

b, Đặt A = 3+32+33+34+ ... +396

Số số hạng của A là : (96 - 1) : 1 + 1 = 96 (số hạng) 

Nếu nhóm 6 số hạng vào 1 nhóm thì số nhóm là : 

96   :    6     =   16 (nhóm) 

Ta có : 

A = (3 + 32 + 33 + 34 + 35 + 36) + (37 + 38 + 39 + 310 + 311 + 312) + ... + ( 391 + 392 + 393 + 394 + 395 + 396

=> A = 3.(1 + 3 + 32 + 33 + 34 + 35) + 37(1 + 3 + 32 + 33 + 34 + 35) + ... + 391(1 + 3 + 32 + 33 + 34 + 35)

=> A = 3. 364 + 37.364 + ... + 391.364 

=> A = 364. (3 + 37 + .... + 391\(⋮\)7 (vì 364 \(⋮\)7)

Vậy A \(⋮\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
DH
Xem chi tiết
BN
Xem chi tiết
NH
Xem chi tiết
NQ
Xem chi tiết
MY
Xem chi tiết
LH
Xem chi tiết