PB

a) Tìm số tự nhiên nhỏ nhất khi chia số đó cho 6, 7, 9 được các số dư lần lượt là: 2, 3, 5.

b) Tìm số tự nhiên a sao cho chia số đó cho 17, 25 được các số dư theo thứ tự là 8 và 16.

CT
8 tháng 5 2017 lúc 6:57

a, Gọi số phải tìm là a, aN*

Vì a chia cho 6, 7, 9 được số dư lần lượt là 2, 3, 5 nên (a+4) chia hết cho 6,7,9.

Suy ra (a+4) ∈ BC(6,7,9)

Mà a là số tự nhiên nhỏ nhất

Suy ra (a+4) = BC(6,7,9) =  3 2 . 2 . 7 = 126 => a+4 = 126 => a = 122

Vậy số phải tìm là 126

b, Gọi số phải tìm là a, aN*

a chia  cho 17, 25 được các số dư theo thứ tự là 8 và 16.

nên (a+7) chia hết cho 8; 16.

Suy ra (a+7)BC(8;16)

Suy ra BCNN(8;16) = 16 => a+7B(16) = 16k (kN).

Vậy số phải tìm có dạng 16k – 7

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
TT
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NP
Xem chi tiết
DA
Xem chi tiết
PS
Xem chi tiết
SK
Xem chi tiết