Bài 1(phần a):
Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\Rightarrow\frac{x.y}{9y}-\frac{27}{9y}=\frac{1}{18}\Rightarrow\frac{xy-27}{9y}=\frac{1}{18}\)
=> 18.(xy-27) = 9y => 2(xy-27) = y=> 2xy -54 -y = 0 => 2xy - y = 54
=> (2x-1).y = 54 => 2x-1 ; y là ước của 54
Ư(54) = {54;1; 27;2; 9; 6; 3; 18;}
Nhận thấy 2x -1 là số lẻ nên ta chỉ cần chọn các trường hợp:
Nếu 2x -1 = 1 => x = 1 => y = 54
Nếu 2x -1 = 27 => x = 14 => y = 2
Nếu 2x -1 = 9 => x = 5 => y = 6
Nếu 2x-1 = 3 => x= 2 => y = 18
Vậy....