Violympic toán 9

KD

a, tìm giá trị lớn nhất của f(x) =√x(1-√x)

b, tìm GTLN của g(x) =1/(x^2-2√2*x+5)

c, tìm GTNN của f(x) =x-4√(x-3)

d, tìm gtnn của g(x) =x-2√(xy)+3y-2√x+4009/2

NH
17 tháng 8 2018 lúc 18:04

a, \(f\left(x\right)=\sqrt{x}\left(1-\sqrt{x}\right)=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)

\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

khi x=1/4

b,\(g\left(x\right)=\dfrac{1}{x^2-2\sqrt{2}x+5}=\dfrac{1}{\left(x-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)

khi x=căn 2

c,\(x-4\sqrt{x-3}=x-3-4\sqrt{x-3}+4-1\)

\(=\left(\sqrt{x-3}-2\right)^2-1\ge-1\)

dấu = khi x=7

d, g(x)=\(x-2\sqrt{xy}+3y-2\sqrt{x}+\dfrac{4009}{2}\)

3g(x)=\(x-6\sqrt{xy}+9y+2x-6\sqrt{x}+\dfrac{9}{2}+6009\)

3g(x)=\(\left(\sqrt{x}-3\sqrt{y}\right)^2+2\left(\sqrt{x}-\dfrac{3}{2}\right)^2+6009\)

3g(x)>= 6009

g(x)>=2003

khi x=9y=9/4ngoam

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
DF
Xem chi tiết
DF
Xem chi tiết
MB
Xem chi tiết
EO
Xem chi tiết
DF
Xem chi tiết
DF
Xem chi tiết
BA
Xem chi tiết
NR
Xem chi tiết