a) Một ô tô trong nửa đầu quãng đường nó chuyển động với vận tốc không đổi v1. Trong nửa quãng đường còn lại nó chuyển động với vận tốc không đổi v2. Tính vận tốc trung bình của nó trên toàn bộ quãng đường? b) Một ô tô trong nửa thời gian đầu nó chuyển động với vận tốc không đổi là v1. Trong nửa thời gian còn lại nó chuyển động với vận tốc không đổi v2. Tính vận tốc trung bình của nó trên toàn bộ quãng đường? c) So sánh vận tốc trung bình tính được trong 2 câu a và b?
a) Gọi độ dài qđ là: s(km), s>0
Ô tô đi nửa qđ đầu mất: \(\dfrac{s}{\dfrac{2}{v_1}}=\dfrac{s}{2v_1}\)(h)
Ô tô đi nửa qđ sau mất: \(\dfrac{s}{\dfrac{2}{v_2}}=\dfrac{s}{2v_2}\)(h)
Vận tốc TB của ng đó trên cả qđ là: \(v_{tb}=\dfrac{s}{\dfrac{s}{2v_1}+\dfrac{s}{2v_2}}=\dfrac{2v_1v_2}{v_1+v_2}\)(km/h)
Vậy......
b) Gọi tổng thời gian ô tô đó chuyển động là t(h), t>0
Quãng đường ô tô đó đi đc trong nửa t.g đầu là: \(\dfrac{t}{2}.v_1\)(km)
Quãng đường ô tô đó đi đc trong nửa t.g sau là: \(\dfrac{t}{2}.v_2\)(km)
Vận tốc TB của ô tô đó là: \(v'_{tb}=\dfrac{\dfrac{t}{2}.v_1+\dfrac{t}{2}.v_2}{t}=\dfrac{v_1+v_2}{2}\)(km/h)
Vậy......
c) Ta có: \(v_{tb}-v'_{tb}=\dfrac{2v_1v_2}{v_1+v_2}-\dfrac{v_1+v_2}{2}=\dfrac{4v_1v_2}{2\left(v_1+v_2\right)}-\dfrac{\left(v_1+v_2\right)^2}{2\left(v_1+v_2\right)}\)
\(=\dfrac{4v_1v_2-\left(v_1+v_2\right)^2}{2\left(v_1+v_2\right)}=\dfrac{-\left(v_1-v_2\right)^2}{2\left(v_1+v_2\right)}\)
Vì \(\left\{{}\begin{matrix}\left(v_1-v_2\right)^2>0\\\left(v_1+v_2\right)>0\left(vì v_1, v_2>0\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\left(v_1-v_2\right)^2< 0\\2\left(v_1+v_2\right)>0\end{matrix}\right.\)
\(\Rightarrow\dfrac{-\left(v_1-v_2\right)^2}{2\left(v_1+v_2\right)}< 0\Rightarrow v_{tb}< v'_{tb}\)
Vậy.....