HG

a, Cho a \(\ge\)0 ; b \(\ge\)0 . Chứng minh bất đẳng thức Cauchy \(\frac{a+b}{2}\ge\sqrt{ab}\)

b, Cho a,b,c > 0 chứng minh rằng \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)

c, Cho a,b > 0 và 3a + 5b =12 . Tìm giá trị lớn nhất của tích P=ab

NA
18 tháng 8 2019 lúc 15:29

a) Giả sử:

\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Rightarrow\frac{a^2+2ab+b^2}{4}\ge ab\)

\(\Rightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)

\(\Rightarrow\frac{\left(a-b\right)^2}{4}\ge0\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng )

=> đpcm

Bình luận (0)

b, Bất đẳng thức Cauchy cho các cặp số dương \(\frac{bc}{a}\)và \(\frac{ca}{b};\frac{bc}{a}\)và \(\frac{ab}{c};\frac{ca}{b}\)và \(\frac{ab}{c}\)

Ta lần lượt có : \(\frac{bc}{a}+\frac{ca}{b}\ge\sqrt[2]{\frac{bc}{a}.\frac{ca}{b}}=2c;\frac{bc}{a}+\frac{ab}{c}\ge\sqrt[2]{\frac{bc}{a}.\frac{ab}{c}}=2b;\frac{ca}{b}+\frac{ab}{c}\ge\sqrt[2]{\frac{ca}{b}.\frac{ab}{c}}\)

Cộng từng vế ta đc bất đẳng thức cần chứng minh . Dấu ''='' xảy ra khi \(a=b=c\)

c, Với các số dương \(3a\) và \(5b\), Theo bất đẳng thức Cauchy ta có \(\frac{3a+5b}{2}\ge\sqrt{3a.5b}\)

\(\Leftrightarrow\left(3a+5b\right)^2\ge4.15P\)( Vì \(P=a.b\)

\(\Leftrightarrow12^2\ge60P\)\(\Leftrightarrow P\le\frac{12}{5}\Rightarrow maxP=\frac{12}{5}\)

Dấu ''='' xảy ra khi \(3a=5b=12:2\)

\(\Leftrightarrow a=2;b=\frac{6}{5}\)

Bình luận (0)

Các câu hỏi tương tự
BV
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
TH
Xem chi tiết
HA
Xem chi tiết
NN
Xem chi tiết
TN
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết