HM

a, b, c là độ dài 3 cạnh tam giác. Chứng minh:

a, 1 < \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)

b, 1 < \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\)

AH
13 tháng 3 2022 lúc 0:59

1. Đặt $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=T$

$\frac{a}{b+c}> \frac{a}{a+b+c}$
$\frac{b}{c+a}> \frac{b}{c+a+b}$

$\frac{c}{a+b}> \frac{c}{a+b+c}$
$\Rightarrow T> \frac{a+b+c}{a+b+c}=1$ (đpcm) 

----

Xét hiệu:

$\frac{a}{b+c}-\frac{2a}{a+b+c}=\frac{-a(b+c-a)}{(b+c)(a+b+c)}<0$ theo BĐT tam giác

$\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}$ 

Tương tư: $\frac{b}{c+a}< \frac{2b}{c+a+b}$

$\frac{c}{a+b}< \frac{2c}{a+b+c}$

Cộng theo vế:

$T< \frac{2(a+b+c)}{a+b+c}=2$

 

$\frac{b}{a+c}

Bình luận (0)
AH
13 tháng 3 2022 lúc 1:02

2. 

Áp dụng BĐT AM-GM:

\(\frac{b+c}{a}.1\leq \frac{1}{4}(\frac{b+c}{a}+1)^2=\frac{(b+c+a)^2}{4a^2}\)

\(\Rightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)

Tương tự với các phân thức còn lại và cộng theo vế:
$\Rightarrow T\geq \frac{2(a+b+c)}{a+b+c}=2$

Dấu "=" xảy ra khi $b+c=a; c+a=b; a+b=c\Rightarrow a=b=c=0$ (vô lý)

Vậy dấu "=" không xảy ra, tức là $T>2>1$ (đpcm)

 

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
LS
Xem chi tiết
LJ
Xem chi tiết
ND
Xem chi tiết
LS
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết