cho a,b,c>0 ; abc=2.CMR
\(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)
cho a,b,c>0 thỏa mãn: a+b+c=1 CMR:
\(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}+\sqrt[3]{abc}\ge\frac{10}{9\left(a^2+b^2+c^2\right)}\)
Cho 3 số dương a, b, c thỏa mãn: abc=2
CMR: \(^{a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{a+c}+c\sqrt{a+b}}\)
cho a,b,c>0 thỏa mãn abc=1.CMR\(\dfrac{a^3}{1+b}+\dfrac{b^3}{1+c}+\dfrac{c^3}{1+a}\ge\dfrac{3}{2}\)
CMR: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) với mọi a,b,c >0
cho a;b;c>0.CMR:\(\frac{\left(a+b+c\right)^2}{abc}+\frac{54}{\sqrt{3\left(a^2+b^2+c^2\right)}}\ge\frac{81}{a+b+c}\)
Cho 3 số thực dương a,b.c thỏa mãn abc=1 cmr:\(\dfrac{b+c}{\sqrt{a}}+\dfrac{c+a}{\sqrt{b}}+\dfrac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
cho a,b,c>0 thỏa mãn abc=1.
CMR:\(\dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1}\ge\dfrac{3}{2}\)
Cho\(a,b,c\ge0;a+b+c\ge abc\)
CMR \(a^2+b^2+c^2\ge\sqrt{3}abc\)
HELP ME!!!!!!!!!!!!!