a) \(\frac{A}{7}=\frac{5}{2\times7}+\frac{4}{7\times11}+\frac{3}{11\times14}+\frac{1}{14\times15}+\frac{13}{15\times28}\)
\(\frac{A}{7}=\frac{7-2}{2\times7}+\frac{11-4}{7\times11}+\frac{14-11}{11\times14}+\frac{15-14}{14\times15}+\frac{28-15}{15\times28}\)
\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(A=7.\frac{13}{28}=\frac{13}{4}\)