H24

A= 5x- x^2

Tìm giá trị nhỏ nhất, lớn nhất của biểu thức A

TP
16 tháng 9 2018 lúc 20:00

\(A=5x-x^2\)

\(A=-x^2+5x\)

\(A=-\left(x^2-5x\right)\)

\(A=-\left(x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right)\)

\(A=-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]\)

\(A=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

\(A=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\)

Vì ( x - 5/2 )2 luôn >= 0 với mọi x

\(\Rightarrow A\le\frac{25}{4}\)với mọi x

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy Amax = 25/4 <=> x = 5/2

P.s : đây là tìm GTLN mà

Bình luận (0)
MN
16 tháng 9 2018 lúc 20:07

\(A=5x-x^2=-(x^2-5x)=-(x^2-5x+\dfrac{25}{4})+\dfrac{25}{4}\) \(=\dfrac{25}{4}-(x-\dfrac{5}{2})^2 \leq\dfrac{25}{4}\) Dấu"=" xảy ra khi  \( x=\dfrac{5}{2}\)

\(\Rightarrow Max_A=\dfrac{25}{4} \Leftrightarrow x=\dfrac{5}{2}\)   

Bình luận (0)

Các câu hỏi tương tự
AG
Xem chi tiết
BA
Xem chi tiết
NL
Xem chi tiết
TT
Xem chi tiết
Xem chi tiết
BL
Xem chi tiết
AA
Xem chi tiết
YL
Xem chi tiết
KF
Xem chi tiết