`A=5+5^2+...+5^100`
`=> A=(5+5^2)+(5^3+5^4)+...+(5^99+5^100)`
`=> A=6.5+6.5^3+...+6.5^99`
`=> A=6(5+5^3+...+5^99)⋮6` (đpcm)
A=(5+52)+(53+54)+...+(599+5100)
=5.(1+5)+53.(1+5)+...+599.(1+5)
=5.6+53.6+....+599.6
=6.(5+53+...+599)
=>A chia hết cho 6
\(5+5^2+...+5^{100}\\ =\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\\ =5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\\ =5.6+5^3.6+...+5^{99}.6\)
Vậy \(A⋮6\)
A=(5+52)+(53+54)+...+(599+5100)
A=5.(1+5)+53.(1+5)+...+599.(1+5)
A=5.6+53.6+....+599.6
A=6.(5+53+...+599)
vậy A chia hết cho 6