VD

a) (3x-1)(x+1)>0

b)(x+2)^2(x-3)bé hơn hoặc bằng 0

c) (x-1/3)^5=4(x-1/3)^3

Me
15 tháng 9 2020 lúc 12:34

                                                          Bài giải

a, \(\left(3x-1\right)\left(x+1\right)>0\)

Khi  \(\orbr{\begin{cases}3x-1< 0\\x+1< 0\end{cases}}\Rightarrow\orbr{\begin{cases}3x< 1\\x< -1\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x< -1\end{cases}}\)

Hoặc \(\orbr{\begin{cases}3x-1>0\\x+1>0\end{cases}}\Rightarrow\orbr{\begin{cases}3x>1\\x>-1\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{1}{3}\\x>-1\end{cases}}\)

b, \(\left(x+2\right)^2\left(x-3\right)\le0\)

\(\Rightarrow\text{ }\left(x+2\right)^2\text{ và }\left(x-3\right)\) đối nhau

Mà \(\left(x+2\right)^2\ge0\) nên \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x-3\le0\end{cases}}\Rightarrow\hept{\begin{cases}x+2\ge0\\x\le3\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-2\\x\le3\end{cases}}\text{ }\left(\text{ loại}\right)\)

\(\Rightarrow\text{ }x\in\varnothing\)

c, \(\left(x-\frac{1}{3}\right)^5=4\left(x-\frac{1}{3}\right)^3\)

\(\left(x-\frac{1}{3}\right)^5-4\left(x-\frac{1}{3}\right)^3=0\)

\(\left(x-\frac{1}{3}\right)^3\left[\left(x-\frac{1}{3}\right)^2-4\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{3}\right)^3=0\\\left(x-\frac{1}{3}\right)^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=0\\\left(x-\frac{1}{3}\right)^2=4=\left(\pm2\right)^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{5}{3}\text{ ; }x=\frac{7}{3}\end{cases}}\)

\(\Rightarrow\text{ }x\in\left\{\frac{1}{3}\text{ ; }-\frac{5}{3}\text{ ; }\frac{7}{3}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
DN
Xem chi tiết
TH
Xem chi tiết
VK
Xem chi tiết
LH
Xem chi tiết
NI
Xem chi tiết
DH
Xem chi tiết
DM
Xem chi tiết
H24
Xem chi tiết