Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NL

A= 1/4 + 1/16 + 1/36 + ...+1/196 chứng minh rằng A < 1/2

NH
10 tháng 5 2023 lúc 23:12

A = \(\dfrac{1}{4}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{36}\) +...+ \(\dfrac{1}{196}\) 

A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{14^2}\)

A = \(\dfrac{1}{\left(1.2\right)^2}\) + \(\dfrac{1}{\left(2.2\right)^2}\) + \(\dfrac{1}{\left(2.3\right)^2}\)+...+ \(\dfrac{1}{\left(2.7\right)^2}\)

A = \(\dfrac{1}{1^2.2^2}\) + \(\dfrac{1}{2^2.2^2}\)\(\dfrac{1}{2^2.3^2}\)+...+ \(\dfrac{1}{2^2.7^2}\)

A = \(\dfrac{1}{2^2}\) \(\times\)\(\dfrac{1}{1}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{7^2}\))

Vì \(\dfrac{1}{2}>\dfrac{1}{3}>\dfrac{1}{4}>\dfrac{1}{5}\) \(>\)\(\dfrac{1}{6}>\dfrac{1}{7}\) 

⇒ \(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+\(\dfrac{1}{4.4}\)+\(\dfrac{1}{5.5}\)+\(\dfrac{1}{6.6}\)+\(\dfrac{1}{7.7}\) < \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+\(\dfrac{1}{6.7}\)

⇒ A < \(\dfrac{1}{2^2}\) \(\times\) ( 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\))

⇒ A < \(\dfrac{1}{4}\) \(\times\) ( 2 - \(\dfrac{1}{7}\))

⇒ A < \(\dfrac{1}{2}\) - \(\dfrac{1}{28}\) < \(\dfrac{1}{2}\)

⇒ A < \(\dfrac{1}{2}\) ( đpcm)

 

 

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
HH
Xem chi tiết
DP
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BA
Xem chi tiết
PH
Xem chi tiết
KS
Xem chi tiết