Ta có:
\(a=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n}=\frac{39}{40}\)
Coi n=a.(a+1)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{a.\left(a+1\right)}\)
Ta thấy:
\(\frac{1}{1.2}=1-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};...\)
\(\Rightarrow a=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{a}-\frac{1}{a+1}\)
\(=1+\frac{-1}{2}+\frac{1}{2}+\frac{-1}{3}+\frac{1}{3}+...+\frac{-1}{a}+\frac{1}{a}-\frac{1}{a+1}\)
\(=1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...-\frac{1}{a+1}\)
\(=1+0+0+...+0-\frac{1}{a+1}\)
\(\Rightarrow1-\frac{1}{a+1}=\frac{39}{40}\)
\(\Rightarrow a+1=40\Rightarrow a=39\)
\(\Rightarrow n=39.40=1560\)