\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{\left(5n+1\right).\left(5n+6\right)}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{5n+1}-\frac{1}{5n+6}\)
\(5A=1-\frac{1}{5n+6}=\frac{5n+6-1}{5n+6}=\frac{5n+5}{5n+6}\)=> \(A=\frac{n+1}{5n+6}\)