\(A=\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{4950}=\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{9900}=2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=2.\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=2.\dfrac{49}{100}=\dfrac{49}{50}\)