\(9\div3\div\frac{1}{3}\)
\(=9\div\frac{3}{1}\div\frac{1}{3}\)
\(=9\times\frac{1}{3}\times\frac{3}{1}\)
\(=9\times\frac{1}{3}\times3\)
\(=\frac{9}{3}\times3\)
\(=3\times3\)
\(=9\)
9 : 3 : 1/3 = 9
k mình nha! Mình ít điểm lắm!
\(9\div3\div\frac{1}{3}\)
\(=9\div\frac{3}{1}\div\frac{1}{3}\)
\(=9\times\frac{1}{3}\times\frac{3}{1}\)
\(=9\times\frac{1}{3}\times3\)
\(=\frac{9}{3}\times3\)
\(=3\times3\)
\(=9\)
9 : 3 : 1/3 = 9
k mình nha! Mình ít điểm lắm!
1+2+3+4+5+6+7+8+9-1-2-3-4-5-6-7-8-9*1*2*3*4*5*6*7*8*9:1:2:3:4:5:6:7:8:9=???
Cmr:
\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\dfrac{1}{9}}-\sqrt[3]{\dfrac{2}{9}}+\sqrt[3]{\dfrac{4}{9}}\)
Chứng minh: \(\sqrt[3]{\sqrt[3]{2}}-1=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
chứng minh rằng
\(\sqrt[3]{\sqrt[3]{\sqrt{2}-1}}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
Chứng minh đẳng thức
\(\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}=\sqrt[3]{\sqrt[3]{2}-1}\)
Chứng minh rằng : \(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{10\sqrt{9}+9\sqrt{10}}\)
không dùng máy tính cầm tay
chứng minh đẳng thức \(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
giúp mình với mơn nhiều
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
CM: \(\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\) là số nguyên