Với a, b, c là các số thực dương thỏa mãn ab + bc + ca =3abc. Tìm giá trị nhỏ nhất của biểu thức P = \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\)
tìm GTNN của biểu thức A = \(\dfrac{x^5+2}{x^3}\)với x>0
Cho a, b là hai số cùng dấu
Tìm giá trị nhỏ nhất của biểu thức P = ( a + b )\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
cho a>b hãy so sánh:
a) 2a+4 và 2b +4 b) 7-2a và 7-2b c) 5a+3 và 5b-3 d) 2a+5 và 2b-11. Giải phương trình:
a. \(\dfrac{x-4}{3}\)-\(\dfrac{x}{4}\)=1
b. x+\(\dfrac{7}{x}\)=8
2. a. Biết a>b.Hãy so sánh 5a-3
b. Giải bất pt:
\(\dfrac{1.5-x}{5}\)≥\(\dfrac{4x+5}{2}\)
A) cho a>b,b>0.Chứng minh a/b + b/a ≥2
B) cho a<b.Chứng minh; -2a - 3 > -2b - 3
C) chứng minh: x2 + 2y2 + 2xy + 6y +9 > 0
D) cho a + 3 > b + 3.Chứng minh: -5a + 1 < -5b +1
Giải phương trình sau:
a) | 2x-3 | - 4x - 9 = 0
b) (x + 1)2 - |5 - 3x| - x = x(x + 2) + 4
Em cảm ơn ạ
1. Cho a < b, chứng tỏ rằng:
a). \(3-6a>1-6b\)
b). \(7\left(a-2\right)< 7\left(b-2\right)\)
c). \(\dfrac{1-2a}{3}>\dfrac{1-2b}{3}\)
2. So sánh a và b nếu:
a). \(a+23< b+23\)
b). \(-12a>-12b\)
c). \(5a-6\ge5b-6\)
d). \(\dfrac{-2a+3}{5}\le\dfrac{-2b+3}{5}\)
2x-3=4x+6