LA

7. Cho pt \(x^2-2020x+2021=0\) có 2 nghiệm phân biệt \(x_1,x_2\). Không giải pt, hãy tính giá trị của các biểu thức
a. \(\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
b. \(x_1^2+x_2^2\)

GH
2 tháng 7 2023 lúc 21:50

Theo vi et: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2020}{1}=-2020\\x_1x_2=\dfrac{c}{a}=\dfrac{2021}{1}=2021\end{matrix}\right.\)

a

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2}{x_1x_2}+\dfrac{x_1}{x_1x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-2020}{2021}\)

b

\(x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-2020\right)^2-2.2021=4076358\)

Bình luận (0)