520 : ( 515 . 6 + 515 . 19)
=5^20: [5^15(6+19)]
=5^20:5^15.5^2
=5^3
\(5^{20}\div\left(5^{15}.6+5^{15}.19\right)\)
\(=\)\(5^{20}\div\left[5^{15}.\left(6+19\right)\right]\)
\(=\)\(5^{20}\div\left[5^{15}.25\right]\)
\(=\)\(5^{20}\div\left[5^{15}.5^2\right]\)
\(=\)\(5^{20}\div5^{17}\)
\(=\)\(5^3\)
\(=\)\(125\)
520 :(515.6+515.19)
=520:(515.(6+19) )
=520:(515.25)
=520:(515.52)=520:517=53