xeta 2 trường hợp trường hợp TH1 x<0
TH2 x>0
xeta 2 trường hợp trường hợp TH1 x<0
TH2 x>0
Giải phương trình sau:
a, x² - x - ( 5x - 5 ) = 0
b, x² - x - ( 4x - 4 ) = 0
bài 1 giải các phương trình sau:
h,\(\left(\dfrac{3}{4}x-1\right)\left(\dfrac{5}{3}x+2\right)=0\)
bài 2 giải các phương trình sau:
b,3x-15=2x(x-5) m,(1-x)(5x+3)=(3x-7)(x-1)
d,x(x+6)-7x-42=0 p,\(\left(2x-1\right)^2-4=0\)
f,\(x^3+2x^2-\left(x-2\right)=0\) r,\(\left(2x-1\right)^2=49\)
h,(3x-1)(6x+1)=(x+7)(3x-1) t,\(\left(5x-3\right)^2-\left(4x-7\right)^2=0\)
j,\(\left(2x-5\right)^2-\left(x+2\right)^2=0\) u,\(x^2-10x+16=0\)
w,\(x^2-x-12=0\)
Giải các phương trình sau: (x – 1)(x +2)(x - 3)(x + 4)(x – 5) = 0
giải phương trình
(x-1)(4-x)≥ x(x-3)-2x2
\(\dfrac{x+2}{x-5}-3< 0\)
giải phương trình bằng cách đưa về phương trình tích
x4 - 4x2+4=0
(x-1).(x2+2x+1) - (x+1).(x-5)=0
Bài 1 Chứng tỏ cặp phương trình sau tương đương
|x-3|=4 va (x+1)(2x-14)=0
Bài 2 Giải phương trình
X-3/x-5 + 1/x = x+5/x(x-5)
giải phương trình x^5 - x^4 - x^2 + 2x+1 =0
Giải bất phương trình
x2-2x+1<9
(x-1)(4-x2)≥0
\(\dfrac{x+2}{x-5}\)<0
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12