Ta có : \(\frac{x}{2}=\frac{y}{3}\) \(\Rightarrow\) \(\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\) \(\Rightarrow\) \(\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\) \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-21}{7}=-3\)
( Tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\) \(x=-30;y=-45;z=-36\)
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}=>\frac{y}{15}=\frac{z}{12}\)
\(=>\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-21}{7}=-3\)
\(\frac{x}{10}=-3=>x=-30\)
\(\frac{y}{15}=-3=>y=-45\)
\(\frac{z}{12}=-3=>z=-36\)
Vậy ....
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
\(\Leftrightarrow\frac{x-y+z}{10-15+12}=\frac{-21}{7}=-3\)
\(\Leftrightarrow\frac{x}{10}=-3\Rightarrow x=-30\)
\(\Leftrightarrow\frac{y}{15}=-3\Rightarrow y=-45\)
\(\Leftrightarrow\frac{z}{12}=-3\Rightarrow z=-36\)