\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^{n-1}.2^3+3^n-2^{n-1}.2\)
\(=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(=3^n.\left(9+1\right)-2^{n-1}.\left(8+2\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)
Mà \(10.\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\) (đpcm)
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)