`= (3 . -2)^(n+1)`
`= -6^(n+1)`
`= (3 . -2)^(n+1)`
`= -6^(n+1)`
cho M=1/(1*2*3)+1/(2*3*4)+...+1/[n(n+1)(n+2)]
va N=[n(n+3)/[4(n+1)(n+2)]
tinh M-N
so sanh hai so E =(3^n+1)+4*(2^n-1)-81*(3^n-3)-8*(2^n-2)+1 va F=(2^n+1)^2+(2^n-1)^-2*((4^n)+1)(n nguyen duong)
Dùng quy nạp nha
1. CMR: ∀n thì
a) \(A=10^n+72-1\)⋮81
b) \(B=2002^n-138n-1\)⋮207
2.CMR: ∀n∈N
a) \(1.2+2.3+3.4+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{8}\)
b) \(1^3+2^3+3^3+...+n^3=\left(\dfrac{n\left(n+1\right)}{2}\right)^2\)
Tính các tổng:
a) A=1/(1*2)+1/(2*3)+...+1/[n*(n+1)]
b) B=1/(1*2*3)+1/(2*3*4)+...+1/[n(n+1)(n+2)]
Chứng minh các đẳng thức thức sau với số tự nhiên n>= 1, tùy ý
a)1+2+3+...+n=\(\frac{n\left(n+1\right)}{2}\)
b)\(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
c)\(1^3+2^3+3^3+...+n^3=\frac{n^2\left(n+1\right)^2}{4}\)
d)1.2.3+...+n(n+1)(n+2)=\(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Tìm số nguyên n sao cho
a) (2n^3 + n^2 + 7n + 1) chia hết cho 2n-1
b)(n^3 - 2) chia hết cho n-2
c)(n^3 - 3n^2 - 3n -1) chia hết cho n^2 + n + 1
d)((n^4 - 2n^3 = 2n^2 - 2n + 1) chia hết cho n^4 - 1
e)(n^3 - n^2 + 2n + 7) chia hết cho n^2 + 1
(\(\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+....+\frac{2}{n-2}+\frac{1}{n-1}\)):\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{n}\)
Bài 2 : cho n thuộc N, n>1
CMR : 1/n+1 + 1/n+2 + 1/n+3 + ... + 1/n+n < 3/4
tính:
a)1/(1+√2) + 1/(√2+√3) +....+ 1/(√99+√n)
b) 1/(2+√2) + 1/(3√2+2√3) +....+ 1((n+1)√2018+2018√(n+1))
CMR: với n thuộc N*
a) 1+3+5+...+(2n-1)=n^2
b)1^3+2^3+3^3+...+n^3=(1+2+3+...+n)^2