ta có:
ta có:
1) Chứng minh bt sau ko phụ thuộc vào biến
a) ( x-1)^ 3 - ( x+4) ( x^2- 4x+16) + 3x ( x-1)
b) (2x+3y) ( 4x^2- 6xy + 9y^2) - ( 2x - 3y ) ( 4x^2+ 6xy + 9y^2) - 27 ( 2y^3- 1 )
c) y( x^2- y^2) ( x^2+ y^2) - y( x^4- y^4)
d) ( x-1)^3- ( x-1) ( x^2+ x + 1 ) - 3 ( 1-x).x
Tính giá trị biểu thức:
a) A = 3 x 2 - 2 ( x - y ) 2 - 3 y 2 tại x = 4 và y = -4;
b) B = 4(x - 2)(x +1) + ( 2 x - 4 ) 2 + ( x + 1 ) 2 tại x = - 1 2 ;
c*) C = x 2 (y-z) + y 2 (z-x) + z 2 (x-y) tại x = 6, y = 5 và z = 4;
d*) D = x 2017 - 10 x 2016 + 10 x 2015 - . . . - 10 x 2 + l0x -10 với x = 9.
phân tích đa thức thành nhân tử
a,x^2+6xy+9y^2
b,4a^4-4a^2b^2+b^4
c,x^6+y^2-2x^3y
d,(x+y)^3-(x-y)^3
e,25x^4-10x^2y^2+y^4
f,-a^2-2a-1
g,27b^3-8a^3
h,x^3+9x^y+27xy^2+27y^3
i,16x^2-9(x+y)^2
a) (x - 3)(2x ^ 2 - 3x + 4)
b) (4x ^ 2 * y - 5x * y ^ 2 + 6xy) 2xy:
c ) x/(2x + 4) - 2/(x ^ 3 + 2x)
Ai giúp mik vs ạ🥲
Bài 3: Rút gọn biểu thức (Dùng hằng đẳng thức)
1, (x+y)\(^2\)-(x-y)\(^2\)
2, (x+y)\(^3\)-(x-y)\(^3\)-2y\(^3\)
3,(x+y)\(^2\)-2(x+y)(x-y)+(x-y)\(^2\)
4,(2x+3)\(^2\)-2(2x+3)(2x+5)+(2x+5)\(^2\)
5, 9\(^8\). 2\(^8\)-(18\(^4\)+1)(18\(^4\)-1)
rút gọn rồi tính giá trị biểu thức
a, I = x (y^2 - xy^2) + y (x^2y - yx = x) tại x = 3 và y =1/3
b, K = x^2 ( y^2 +xy^2 +1) - ( x^3 +x^2 +1 ) y^2 tại x = 0,5 và y = -1/2
tìm x bt
a, 2 ( 5x - 8 ) - 3 ( 4x - 5 ) = 4 ( 3x - 4 ) + 11
b, 2x ( 6x - 2x^2 ) + 3x^2 ( x - 4) = 8
a) x4-y4
b)9(x-y)2-4(x+y)2
c)x2-9y2
d)(3x-2y)2-(2x-3y)2
e)x4+2x2+1
f)-x2-2xy-y2+1
g)x3+1-x2-x
h)(x+y)2-2(x+y)+1
i)(x+y)3-x3-y3
k)3x2-6xy+3y2-12z2
Bài 1: Tính giá trị:
A= x^2+4y^2-2x+10+4xy-4y tại x+2y=5
B= (x^2+4xy+4y^2)-2(x+2y)(y-1)+y^2-2y+1 tại x+y=5
C= x^2-y^2-4x tại x+y=2
D= x^2+y^2+2xy-4x-4y-3 tại x+y=4
E= 2x^6+3x^3y^3+y^6+y^3 tại x^3+y^3=1
Bài 2: Chứng minh rằng
a) -9x^2+12x-5<0
b) 4/9x^2-4x+9/2>0
Bài 3: Tìm giá trị lớn nhất:
A= 4-2x^2
B=(1-x)(2+x)(3+x)(6+x)
C=-2x^2-y^2-2xy+4x+2y+5
D=-9x^2+24x-18
E=-x^4+2x^3-3x^2+4x-1
bÀI 36;
1, 2( x + y) - 5a( x+ y )
2, a mũ 2 ( x- 5 ) - 3 ( x- 5 )
3, 4x (a -b ) + 6xy( b - a )
4, y (a - b) -x (b -a)
5, 6x(x - y) + 8y( y - x)
6, 4( x - 3 ) mũ 2 - 2x ( x- 3)