Đặt A = \(\dfrac{3}{6\cdot8}+\dfrac{3}{8\cdot10}+...+\dfrac{3}{158\cdot160}\)
A = \(\dfrac{3}{2}\cdot\left(\dfrac{2}{6\cdot8}+\dfrac{2}{8\cdot10}+...+\dfrac{2}{158\cdot160}\right)\)
A = \(\dfrac{3}{2}\cdot\left(\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+...+\dfrac{1}{158}-\dfrac{1}{160}\right)\)
A = \(\dfrac{3}{2}\cdot\left(\dfrac{1}{6}-\dfrac{1}{160}\right)\)
A = \(\dfrac{3}{2}\cdot\dfrac{77}{480}\)
A = \(\dfrac{77}{320}\)
Vậy: A = \(\dfrac{77}{320}\)