\(\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{6}-\sqrt{2}}+\dfrac{1}{2}\)
\(=\dfrac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}+\dfrac{1}{2}\)
\(=\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}=\dfrac{\sqrt{2}+1}{2}\)
\(\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{6}-\sqrt{2}}+\dfrac{1}{2}\)
\(=\dfrac{\sqrt{3}-1}{\sqrt{2}\left(\sqrt{3}-1\right)}+\dfrac{1}{2}\)
\(=\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}=\dfrac{\sqrt{2}+1}{2}\)
a/ (√10+√2) (6-2√5)√(3+√5)
b/ √(13-√160) - √(53-4√90)
c/ √(10+√24+√40+√60)
d/ (√2+√3+√6+√8+√16)/(√2+√3+√4)
e/ [√216/3-(2√3-√6)/(√8-2)] ×1/√6
f/ 1/(√2-√3) × √[(3√2-2√3)/(3√2+2√3)]
g/ 1/(√1+√2) + 1/(√2+√3) + ......+ 1/(√2017+√2018)
Tính:
1) \(\dfrac{3}{1-\sqrt{2}}+\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)
2) \(\dfrac{\sqrt{5}-1}{\sqrt{5}+1}+\dfrac{6}{1-\sqrt{5}}\)
3) \(\dfrac{\sqrt{2}+\sqrt{3}}{2-\sqrt{6}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}+2}\)
4) \(\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}\)
5) \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
1)\(\dfrac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\left(\dfrac{\sqrt{3}}{2-\sqrt{6}}+\dfrac{\sqrt{3}}{2+\sqrt{6}}\right)-\dfrac{1}{\sqrt{2}}\)
2)\(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}+\dfrac{12}{\sqrt{6}-3}-\sqrt{6}\)
3)\(\left(\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{6}+\sqrt{2}}\right)\left(\sqrt{3}-1\right)^2\)
a) \(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}+\frac{12}{\sqrt{6}-3}-\sqrt{6}\)b)\(\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\left(\frac{\sqrt{3}}{2-\sqrt{6}}+\frac{\sqrt{3}}{2+\sqrt{6}}\right)-\frac{1}{\sqrt{2}}\)c) \(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right)\frac{1}{\sqrt{3}+5}\)d) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
Tính:
1) \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{2+\sqrt{5}}\)
2) \(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}\)
3) \(\dfrac{1}{\sqrt{5}-\sqrt{7}}+\dfrac{2}{1-\sqrt{7}}\)
4) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\)
5) \(-\dfrac{1}{\sqrt{2}-\sqrt{3}}\)\(-\dfrac{3}{\sqrt{18}+2\sqrt{3}}\)
rút gọn các biểu thức sau
\(\dfrac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}\)+\(\dfrac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\)
\(\dfrac{\sqrt{3}}{1-\sqrt{\sqrt{3}+1}}\)+\(\dfrac{\sqrt{3}}{1+\sqrt{\sqrt{3}+1}}\)
giải hệ pt (đặt ẩn phụ )
a) x+2/x+1 + 2/y-2 =6
5/x+1 -1/y-2 =3
b) 2/2x-y +3/x-2y =1/2
2/2x-y -1/x-2y =1/18
c) 2|x-6| +3|y+1| =5
5|x-6| -4|y+1| =1
d) |x| +|y-3| =1
y - |x| =3
1+2+3+4+5+6+7+8+9-1-2-3-4-5-6-7-8-9*1*2*3*4*5*6*7*8*9:1:2:3:4:5:6:7:8:9=???
chứng minh
\(\dfrac{3}{2}\)\(\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt{6}}{6}\)
rút gọn
D=\(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}\)\(-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
Rút gọn:
a,
\(\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{\sqrt{3}}{2-\sqrt{6}}+\dfrac{\sqrt{3}}{2+\sqrt{6}}\right)-\dfrac{1}{\sqrt{2}}\)