\(\left(2x+1\right)^2\ge4x^2-3\)
\(\Leftrightarrow4x^2+2x+2x+1\ge4x^2-3\)
\(\Leftrightarrow4x^2-4x^2+2x+2x\ge-3-1\)
\(\Leftrightarrow4x\ge-4\\ \Leftrightarrow x\ge-1\)
Vậy phương trình có tập nghiệm là:\(S=\left\{x|x\ge-1\right\}\)
\(\left(2x+1\right)^2\ge4x^2-3\)
\(\Leftrightarrow4x^2+4x+1\ge4x^2-3\)
\(\Leftrightarrow4x^2-4x^2+4x\ge-3-1\)
\(\Leftrightarrow4x\ge-4\)
\(\Leftrightarrow x\ge-1\)
\(\left(2x+1\right)^2\ge4x^2-3\\ \Leftrightarrow4x^2+4x+1-4x^2+3\ge0\\ \Leftrightarrow4x\ge-4\\ \Leftrightarrow x\ge-1\)
Vậy: S= [-1; +∞)