Đáp án B
Gọi I, R là tâm và bán kính của mặt cầu (S) suy ra R =AB/2 = √6 và I(3; - 1; 4).
Khi đó phương trình mặt cầu (S) là:
(x - 3)² + (y + 1)² + (z - 4)² = 6 <= > x² + y² + z² - 6x + 2y - 8z + 20 = 0
Đáp án B
Gọi I, R là tâm và bán kính của mặt cầu (S) suy ra R =AB/2 = √6 và I(3; - 1; 4).
Khi đó phương trình mặt cầu (S) là:
(x - 3)² + (y + 1)² + (z - 4)² = 6 <= > x² + y² + z² - 6x + 2y - 8z + 20 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(2;1;1) và mặt phẳng ( α ) : x + y + z - 4 = 0 và mặt cầu ( S ) : x 2 + y 2 + z 2 - 6 x - 6 y - 8 z + 18 = 0 . Phương trình đường thẳng d đi qua M và nằm trong mặt phẳng α cắt mặt cầu α theo một đoạn thẳng có độ dài nhỏ nhất là:
Trong không gian Oxyz, cho mặt cầu (S) có phương trình
S : x 2 + y 2 + z 2 - 2 x + 6 y + 8 z - 599 = 0 .
Biết rằng mặt phẳng α : 6x-2y+3z+49=0 cắt (S) theo giao tuyến là đường tròn (C) có tâm là điểm P(a;b;c) và bán kính đường tròn (C) là r. Giá trị của tổng S = a+b+c+r là
A. -13
B. 37
C. 11
D. 13
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt cầu (S) có tâm nằm trên đường thẳng d : x 1 = y - 1 1 = z - 2 1 và tiếp xúc với hai mặt phẳng (P): 2x - z - 4 = 0, (Q): x – 2y – 2 = 0
A . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
B . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
C . S : x + 1 2 + y + 2 2 + z + 3 2 = 5
D . S : x - 1 2 + y - 2 2 + z - 3 2 = 3
Trong không gian Oxyz, cho hai mặt phẳng (P): x - 2y - z + 3 = 0,
(Q): 2x + y + z - 1 = 0. Mặt phẳng (R) đi qua điểm M(1;1;1) và chứa
giao tuyến của (P) và (Q).
Phương trình của (R): m.(x - 2y - z + 3) + (2x + y + z -1) = 0. Khi đó giá trị của m là
A. 3
B. 1 3
C. -1
D. -3
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
(P): x-2y+2z=0. (Q): x-2y+3z-5=0. Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
d: x - 1 2 = y + 1 3 = z - 3 - 1 và mặt phẳng (P): x + 2y - 2z = 0.
Phương trình mặt cầu (S) có tâm tiếp xúc và cách (P) một
khoảng bằng 1
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 1 2 = z - 3 - 2 và mặt phẳng (P): 2x - 2y + z - 3 = 0, phương trình đường thẳng ∆ nằm trong mặt phẳng (P), cắt d và vuông góc với d là
A. x = 2 - 2 t y = 1 - 5 t z = - 5 - 6 t
B. x = - 2 - 2 t y = - 1 - 5 t z = 5 - 6 t
C. x = - 2 - 2 t y = - 1 + 5 t z = 5 - 8 t
D. x = - 2 - 2 t y = 1 - 5 t z = 5 + 6 t
Trong không gian Oxyz, cho hai mặt phẳng (P): x - 2y - z + 3 =0, (Q): 2x + y + z - 1= 0, . Mặt phẳng R đi qua điểm M(1;1;1) và chứa giao tuyến của (P) và (Q); phương trình của (R): m.(x-2y-z+3) + (2x+y+z-1). Khi đó giá trị của m là
A. 3
B. 1 3
C. - 1 3
D. 3
Trong không gian với hệ tọa độ Oxyz,
cho hai mặt phẳng:
(P): x + y + z - 2 = 0
(Q): x + 2y - z +3 = 0
và điểm A(1;0;4). Phương trình đường thẳng qua A và cùng song song với (P)
và (Q).
Trong không gian tọa độ Oxyz, cho A(-3;3;-3) thuộc mặt phẳng ( α ) có phương trình 2x - 2y + z + 15 = 0 và mặt cầu (S): ( x - 2 ) 2 + ( y - 3 ) 2 + ( z - 5 ) 2 = 100 . Đường thẳng qua ∆ , nằm trên mặt phẳng ( α ) cắt (S) tại M, N. Để độ dài MN lớn nhất thì phương trình đường thẳng ∆ là
A. x + 3 1 = y - 3 4 = z + 3 6
B. x + 3 16 = y - 3 11 = z + 3 - 10
C. x = - 3 + 5 t y = 3 z = - 3 + 8 t
D. x - 1 3 = y - 3 - 1 = z + 3 3